‘ ! ! . UCRL-TR-220300

EEEEEEEE
EEEEEEEEE
NNNNNNNN

AAAAAAAAAA The State of the Art In
Graph-Based Pattern Matching

B. Gallagher

March 31, 2006

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

The State of the Art in Graph-Based Pattern Matching

Brian Gallagher
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
March 31, 2006

ABSTRACT

The task of searching for patterns in graph-struetlidata has applications in such diverse areas as
computer vision, biology, electronics, computersidiesign, social networks, and intelligence anglyss
such, work on graph-based pattern matching spanside range of research communities. Due to
variations in graph characteristics and problem wégments, graph-based pattern matching is not a
single problem, but a set of related problems. Plaiger presents a survey of existing work on graased
pattern matching, describing variations among graphtching problems, general and specific solution
approaches, evaluation techniques, and directiongurther research. An emphasis is given to teghes
that apply to general graphs with semantic charasties. The survey also discusses techniquesragtg
mining, an extension of the graph matching problem.

1. INTRODUCTION

Work on pattern matching in graphs spans a diveasge of research communities within and beyond
computer science. Relevant research and applicaticeas include databases, computer vision,
mathematical graph theory, artificial intelligendaformation retrieval, biology, electronics, contgu
aided design, and knowledge discovery and datangpini

Graph-based pattern matching is not a single pnobleit a set of related problems. These range fhem
NP-completesubgraph isomorphismroblem, in which matches are based strictly caplgrstructure, to
finding occurrences of complex structural and sdiogratterns in semantic graphs with millions gbeg
and attributed vertices and edges. The focus efdbivey is on techniques that are applicable rergd
graphs that may have semantic characteristics. Inoto cover specialized approaches for structural
subclasses of graphs, such as trees or planargraph

In the remainder of this section | present a fordedcription of the basic graph pattern matchiraplem
and discuss a number of common problem variatidnssection 2, | outline a general strategy that ha
been applied by many approaches to matching patt@rrgraphs. In section 3, | discuss a number of
specific approaches that have been developed fdnga variety of graph matching and mining probte
Section 4 covers techniques for the evaluationraply pattern matching algorithms. Finally, secton
summarizes the findings of this survey and discugdieections for future research in graph pattern
matching.

1.1 The Graph Pattern Matching Problem

The basic graph pattern matching problem is to fimtches for a specified pattern in a graph da&bas
More formally, we are given:

1. AdatagraphG = (V, E), composed of a set of verticésand a set of edgés EachelE is a pair
(v1, Vo) Wherevy, oIV, The vertices and/or edges@imay be typed and/or attributed.

2. A pattern graph (or pattern query) P = (Vp, Ep), which specifies the structural and semantic
requirements that a subgraph@®mmust satisfy in order to match the pattBrn

The problem is to find the séfl of subgraphs ofs that "match" the patter® (structurally and/or
semantically). A graplis' = (V', E") is a subgraph o& if and only ifV' 0 V andE' O E. Generally, it is
also required thaE' contain only edges for which both endpoints ar&ifi.e., thatG' is a graph). Some
formulations of the problem require thBtrepresent a single connected graph and, therefioag,the

subgraphs irM be connected. A graph is connected if there £xdete path between every pair of its
vertices.

The precise definition of a "match" varies from lgieon to problem, but this definition is generallgsied

on some combination of (1) isomorphism (i.e., el matching) or near isomorphism betwé&eand its
matches irM and (2) equality or similarity between the typed attribute values of the vertices and edges
in P and its matches iW.

1.2 Problem Variations

There are a number of variations on the basic atte@tching problem. Variation generally occumsnal
one or more of the following dimensions.

Graph properties

All graphs share the same basic structural elemeattices and edges, but other structural and stma
graph properties vary from problem to problem. 8araphs are typed. That is, vertices and/or edges
assigned a type (or label) from predefined sets.dxample, if we have a graph representing a movie
database, vertex types may includevie actor, anddirector and edge types may includ@peared-in
sequel-tg anddirected(seeFigure 1). Other graphs are not typed (i.e., all vertioeedges are of a single
implicit type). In addition to type labels, somgstems allow a set of attributes and their corradpw
values to be associated with each vertex and/ce edthe graph. Returning to our movie graph eXap®
movievertex may have attributes suchtifle, year, genre andrating.

appeared-in Actor

sequel-to

title
year

genre
rating

Figure 1: An example ontology for a movie database

A semantic graplis a graph-structured data representation in whétices represent concepts and edges
represent relationships between concepts (as imthee database example). In general, both vertioels
edges in a semantic graph are typed and attribatedliscussed above. Furthermore, a semantic graph
generally has an associatedtology which specifies the concepts that may appeahén graph, the
relationships allowed between each pair of con¢eptd the attributes associated with each coneepteik
type) and relationship (edge type). Ontologiesntelves are often represented as graphsigeee 1).

Graphs also differ in the restrictions placed ogesd For example, graphs may allow or disallowaléd
or undirected edges, weights on edges, multiplesdgtween a pair of vertices (multigraphs), argeed
that connect a single vertex to itself (self-loops)

Single-graph vs. graph-transaction setting

Some graph databases consist of a set of relativasll graphs (callettansaction$, while others consist
of a single large graph. Kuramochi and Karypis [B2er to these cases as firaph-transaction setting
and thesingle-graph settingrespectively. The single-graph setting is moemeagal and algorithms
developed for this setting can be readily appledhe graph-transaction setting, although the ceevis
generally not true.

Structural vs. semantic matching

Since many graphs are neither typed nor attributeghy graph matching algorithms perform matching
based strictly on link structure (i.e., the "shapé'the graph) and completely ignore the semaritics
meaning) associated with the graph's vertices alggs[24,25,31,34]. Other algorithms take semsantic
into account by matching based on vertex/edge tgpa#tributes as well as structure [1,8,10,17,36].

Exact vs. inexact matching

A graph matching algorithm may return only thosgutes that match a specified pattern exactly onaty
return a ranked list of the most similar matchessacommon in an information retrieval settingy(eWeb
search engines). In addition, some systems allatteqms to be left only partially specified (e.gsing
"wildcards" or cardinality operators) [4,36]. Inig case, while the results may match the patteacty,
this is a form of inexact matching because theepatitself is inexact (e.g., "find athovievertices linked
to any vertex" vs. "find alnovievertices linked to aactor vertex").

Exact vs. approximate solutions

Quite distinct from whether an algorithm performe&e or inexact matching, algorithms vary based on
their guarantees regarding solution quality. Exalgorithms forsubgraph isomorphisnfi.e., structural
pattern matching) are guaranteed to find an optsohltion, but have exponential worst-case compjexi
[29]. Approximate algorithms [7,32] often have yrmdbmial complexity, but are not guaranteed to fmd
optimal solution.

Graph matching vs. graph mining

There are a variety of problems that build on graaittern matching. One such problem, which has
received increasing attention recently, is thagmafph miningor structural motif finding Whereas the goal
of graph matching is to find occurrences of a djgepattern in a graph, the goal of graph miningpigind

a set of the most common or most "interesting"guast in a graph [9,11,16,22,34,38].

2. A GENERAL-PURPOSE MATCHING APPROACH

Subgraph isomorphisiis the problem of determining whether one gr&pk isomorphic to a subgraph of
another grapl@ (i.e., whether the pattefd has a structural match {8). Since subgraph isomorphism is
known to be NP-complete [34], all known algorithfasfinding subgraph isomorphisms are exponential i
the size of the input graphs. Therefore, it is iagpical to solve subgraph isomorphism directlyarge
graphs. This leaves us with two options for matgtpatterns in reasonable time: (1) use an apprdgima
isomorphism algorithm, which may yield non-optinsalutions (i.e., false positives or false negadwvas
(2) use an exact isomorphism algorithm, but apptp ionly a subset of the data. In general, thisoad
approach is achieved by performing some pre-prowgs filter out unpromising portions of a dataset
before any direct matching takes place. This filaing step is known asandidate selectian

Giugno and Shasha [15] describe the three basiqpapemts of their algorithmGraphGrep as index
construction, database filtering, and subgraph hiagc This basic framework can be generalized to
describe the majority of graph pattern matchingatgms. In general, these algorithms have thieeses:
data analysis and metadata construction, candsgddetion, and matching.

Data analysis and metadata construction

Many algorithms perform some sort of pre-processinga dataset to create summary information, which
informs the candidate selection proce€saph invariantsare a common example of such summary
information. An invariant is a quantity used to @erize a graph [34]. If two graphs are idertitzey

will have identical invariants, although the corsesis not necessarily true. Due to this propertingle
comparison of invariant values between patterndatd graphs may be sufficient to eliminate many-non
matches. Graph invariants are most common in taphgtransaction setting and are generally appbed t
exact matching. Thaauty algorithm [24] computes graph invariants for easntex in a graph (e.g.,
degree). Several algorithms use a canonical grajptesentation to derive invariants [34]. GraphJfeg
creates a "fingerprint” for each graph in a datahasng path-based invariants.

A complimentary approach to calculating graph iresats is to create a statistical summary of anrenti
graph dataset. For example, Statistical Relatiodaldels (SRMs) [13] construct a model of the
dependencies between attributes in a relationalseatby utilizing conditional independence projesrti
between attribute values within and across relati@e., database tables). SRMs can provide appaigi
answers to counting queries (e.g., how mamgviesin our dataset havactors with the last name
"Smith"?). These approximate counts are helpfuldetermining an efficient ordering of filtering m@tia
when multiple criteria exist for eliminating non-tohes (e.g., multiple graph invariants).

In addition to the types of summary informationeally mentioned, it is often useful to construct one
more indices into a graph dataset, as is commaelational databases. Indices into graph data alem t
many forms. For example, we may want to index aeswes of common structural patterns in a large
graph so that we can locate them quickly. Emebedding listaised by graph mining algorithms are a
common example of this (see section 3.2). In seimgraphs, it is common to retrieve all verticesedges

of a particular type or with a particular attribw@ue (e.g., find almoviesor 'find allactorswith the last
name "Smith"™). These operations can be sped uqg usilices on types and attributes.

Candidate selection

Once we have constructed metadata (e.g., an imdeasure, or model) for our dataset, we can use this
information to direct our search for matching sapdns. If graph invariants differ between a subgr@ph
and our patter®, there is no need to perform direct matching betweandS. If an SRM tells us that a
match to our query is very unlikely, we may nothmstsearching for an exact match. Statistical neodel
such as SRMS can also help us decide which nonkhestto filter out first by providingelectivity
estimatedi.e., determining which criteria in a pattern #re most selective or occur least frequently & th
dataset). The TRAKS [1] and LAW [36] systems usepte frequency statistics to perform this kind of
selective pruning on the space of potential matches

It is worth noting that effective candidate seleotin semantic graphs is possible without the eipli
generation of graph invariants since semantic gragifeady contain a rich set of data on which Iterfi
potential matches (i.e., the types and attributeesmattached to graph vertices and edges). Fon@ga if

our pattern contains a vertdk of typemovie we don't need to consider every vertex in a deaph as a
potential match toM, only those vertices of typmovie Even so, type and/or attribute based indices into
our dataset may speed up this filtering processséatiktical summaries, such as those providedRIMS
may prove useful for creating an efficient orderirfdilters.

When the candidate selection phase is completehawe a list of candidates on which to perform
matching. The goal of candidate selection is wdpce as small a list of candidates as possibleowit
eliminating any true matches from the list.

Matching

During the matching phase, candidates identifieccéydidate selection are checked for matches to the
specified pattern. Researchers have experimeritacavaumber of approaches for solving graph mathi
problems. The next section provides details onynsaecific approaches.

3. SPECIFIC MATCHING AND MINING APPROACHES
Researchers have explored a number of approachgsafiern matching and mining in graphs. These
include [34]:

» Search-based techniques

* Inductive Logic Programming

* Inductive databases

» Mathematical graph theory (such as Complete Leviske\VBearch)

» Kernel functions (such as Support Vector Machines)

The focus of this survey is on search-based saisitio

The remainder of this section is organized as fadlo First | discuss matching and mining approathats
perform matching based on graph structure (i.dagsaph isomorphism). Then | present several magchi
techniques that make use of semantics as wellrastste. Finally, | describe approaches for mdagur
similarity between graphs to support inexact pattaeatching.

The set of approaches covered here is illustrabivenot exhaustive. For a more complete listihgraph
matching approaches see Shasha et al. [29]. Rwra complete listing of graph mining approaches, s
Washio and Motoda [34] and Worlein et al. [38].

3.1 Structural Matching Approaches

One of the most highly-cited approaches to exattepamatching is the subgraph isomorphism algorith
proposed by Ullmann [31]. This algorithm operadessingle untyped graphs with directed or undirécte
edges. Suppose we want to find matches to therpajtaphP in the data grap® depicted irFigure 2.

P G

Figure 2: An example pattern graphP and data graphG

The basic approach is to enumerate all possiblepingp of vertices irfP to those inG using a depth-first
tree-search algorithm. Each node at léwalthe search-tree maps verdx in P to a different vertex i
(Figure 3). Each path from root to leaf in the search-tegresents a complete mapping of the vertices in
P to those inG. Any such mapping that preserves adjacendy amdG (i.e., vertices that are neighbors in
P map to vertices that are neighbor&nrepresents an isomorphism fréhio a subgraph d&. If no such
mapping preserves adjacency, then no such isonsnpéikists. Since the search-space considereddy th
approach increases exponentially with the size haf input graphs, Ullmann suggests a refinement
procedure to prune unpromising sub-trees, elinmigathe need to expand them. This procedure eltesna
vertex mappings from consideration based on thrigeria:

1. Vertex degree— If the degree of verteXy; (i.e., the number of edges adjacenwt is greater
than the degree afg; thenVp; cannot possibly map ;. For example, sincép; has degree two
andVg,4 has degree one, no match can Magpto Vg, (Figure 2).

2. One-to-one mapping of vertices- Once we decide to may; to Vg, along a particular path
through the tree, we cannot map\Vg any other vertex il and we cannot map any other vertex
in P to Vg;.

3. Forward checking — As we work our way down the tree, for any pdssiertex mapping that
remains, we can eliminate the mapping if it carpasibly preserve adjacency betwé&eandG.
For example, suppose that we have decided to\featw Vg, and we are considering the possible
mapping fromVp, to Vgs. Regardless of what we do further down the tregpping fromVp, to
Vg3 cannot possibly preserve adjacency siviggandVp, are neighbors iR, butVg; andVg; are
not neighbors inG. So, we can eliminate the possible mapping fMmto Vgs from further
consideration.

As Ulimann's algorithm expands a particular patthensearch-tree, one of two things will happen:

1. The algorithm will eliminate all possible mappinfgs some vertex ifP. In this case, the path we
are on cannot yield a match. We can safely staghowt expanding additional nodes along the
current path, and backtrack.

2. The algorithm will reach a leaf of the tree, havaugcessfully mapped each verteyPito exactly
one vertex irG. In this case, the path represents a matcR forG (seeFigure 3).

7 N

Vpg —» Vg \e) VGs Vs

VGs Ve

Vp3 —® Vg3 Vs Va2 Vea Vo2 Ve:

Vpz —» Vg 4 Vo1 VGs Vea Va1 Va2 VG4

Figure 3: A partial search-tree for Ullmann's algotithm, mapping the verticesvpy, Ve, Ves
in pattern graph P to verticesvg;, Veo, Ves, Vaa in graph databaseG. The highlighted path
represents a match forP in G.

Messmer and Bunke [25] point out that, despiteréfimement procedure, Ullmann's algorithm has worst
case time-complexity that is exponential in the ©izthe input graphs. They propose an alternatigthod

for exact subgraph isomorphism that has only quedverst-case time complexity. Their algorithnsal
operates on multiple untyped graphs with directedralirected edges. The approach is to pre-prabess
graph dataset to generate all possible permutatibitise graph adjacency matrices offline and organi
them in a decision tree. At run time the decigiee is used to classify the adjacency matrix efghttern
graph. The drawback to this approach is that ite &f the decision tree grows exponentially witkpect

to the size of the data graph. To address thigjsthe authors present pruning techniques, whieh a
effective in reducing decision tree size. Howewbe pruned decision trees can no longer guarantee
polynomial run times.

The nauty algorithm [24,34] detects isomorphism between petly graphs that may be directed or
undirected.Nautyuses transformations to reduce graphs to a caadnitn that may be checked relatively
quickly for isomorphism. Specifically, the algomthcomputes invariants for each vertex in a grap.,(e
degree and counts of adjacent vertices of varimgreks) that are used for candidate selecti@uty
partitions a graph into non-overlapping subsetd ghat the vertices in a particular subset shagatidal
invariant values. Subsets having the same inviaxialues can then be compared across graphs.| If al
subsets are isomorphic between two graphs, thetwthgraphs must be isomorphic. Alternativelytwb
graphs contain subsets with differing invariantere is no need to test isomorphism between the set
directly.

SUBDUE [9,11] operates in a single-graph settinthwyped vertices and typed, directed edges. SUBDUE
is a graph mining system, but performs pattern hiagcas an intermediate step in the mining procEiss.
algorithm uses a graph matching approach basedatrot Bunke and Allermann [6]. The basic approach
is similar to Ullmann's algorithm. We construcsearch-tree, where the nodes atithéevel map tha™
vertex fromP to some vertex i. A path through the tree represents a complefging of vertices from

P to G. Since SUBDUE performs inexact matching, eachenodthe search-tree also has an associated
cost that captures how wéll matchess. The cost is a distance measure between grdplisandG are
exactly isomorphic, there will be a mapping betwtem with 0 cost. The more differdPtandG are, the
higher the cost will be. Match costs are calculadsdthe sum of the costs assigned to the individual
"distortions"” required to convetto G. Distortions are described in terms of basicdfammations such as
deletion, insertion, and substitution of verticesl @dges. For the inexact matching task, the gast &

the final state (leaf) with the least cost of aflal states. Since the search-space is again laegg,
SUBDUE applies a branch-and-bound search to tlee tBecause branch-and-bound is guaranteed to find
an optimal solution, the search terminates oncecamyplete mapping is found. The algorithm alsovadlo

an upper limit to be placed on the number of seamiles considered, which can lead to a significant
savings in search time at the expense of solutimtity.

3.2 Structural Mining Approaches

Graph mining algorithms find "interesting" patteinggraphs, based on some definition of interesigsg.

For instance, the SUBDUE system evaluates the estiagness of patterns based on the amount of
information required to represent them and theueagy of their occurrence. More commonly, the pate

of interest are simply those that occur most fretjyein the graph database. Interesting patterms ar
generally found by enumerating possible patterres, @andidate generatignand then evaluating each
pattern in terms of its interestingness. In caskere it is the frequency of patterns that is eséng,
evaluation consists of checking generated candipgatierns against a graph database and counting how
frequently each pattern occurs. Woérlein ef38] describe three main problems that all effitisnbgraph
mining systems must solve:

1. Purposive refinement— Efficiency of mining algorithms improves if afgarithm enumerates
only those patterns that actually appear in thaldeste instead of exhaustively enumerating all
possible patterns.

2. Efficient enumeration — Mining algorithms must be able to detect anchprduplicate patterns in
order to avoid counting duplicates and performinghacessary processing. Since duplicate
detection generally requires an isomorphism tess, desirable to prevent generation of duplicate
patterns in the first place. In addition, compgrpatterns using a canonical graph representation
can improve duplicate detection times over perfagréxplicit isomorphism calculations.

3. Focused isomorphism testing- Some graph mining systems stembeddinggor embedding
lists), which map the vertices and edges from a paitemthe data graph(s) where the pattern
occurs, allowing quick access to these occurreriédsrger candidate patterns are generated by
extending smaller patterns, checks for the larggétepn need only to be carried out in portions of
the data graph(s) where the smaller pattern is knmaoccur. Thus, embeddings can reduce the
number of subgraph isomorphism tests required.

SUBDUE [9,11] performs substructure discovery (iggaph mining) in a single-graph setting with tgfpe
vertices and typed, directed edges. SUBDUE usasmuim description length (MDL) to discover
common graph substructures. Specifically, SUBD@&rshes for the substructugethat minimizes the
number of bits required to sto8plus the original graph witB replaced by a single vertex. The goals are
(1) to find the substructures that allow the engraph to be maximally compressed and (2) to ifienti
conceptually interesting substructures. Substrastare discovered using a computationally-conmstthi
beam search. Like best-first search (e.g., A*arbesearch uses a heuristic function to decide wégeinch
nodes to expand. However, beam search only stoedsnhost promising nodes at any tinieig referred to

as thebeam width, so the algorithm is approximate and not guastht® find an optimal solution. The
algorithm begins with substructures that matchralei vertex in the data graph and then expands the
substructures by one edge on successive iterabibtie algorithm. In this way the algorithm coredisl
only those patterns that actually appear in tha ¢iat., purposive refinement). The algorithm skascfor

the best structure (based on MDL) until all substtites have been exhausted or the algorithm exceeds
specified computational constraints. The algoriiBroapable of discovering more complex substrastur
by making successive passes over the data, pragadierarchy of structural "concepts." SUBDUEsuse
either exact or inexact matching of structurestaileof the graph matching algorithm are discusssolve

in Section 3.1. It is unclear from the algorithnsdeption whether SUBDUE uses focused isomorphism
testing or how SUBDUE addresses the efficient ematizsn problem.

Kuramochi and Karypis [22] also address the probé&éngraph mining in a single-graph setting. Their
graphs are typed and undirected. They offer smistito the “exact discovery problem,” but also dast
solutions to the “approximate discovery problem’s(éset of the exact problem) and the “upper bound
discovery problem” (a superset of the exact probleifheir general approach is to construct a latoé
frequent subgraphs. Levklin the lattice contains all frequent subgraphsiaék (i.e., k edges). The
authors present two algorithms for generating thttice and the associated frequencies of nodes
(representing subgraphs) in the lattice. The HS\@Ralgorithm generates the lattice breath-first dinel
VSIGRAM algorithm generates the lattice depth-fir&oth algorithms employ a number of optimizations
to speed up processing. In particular, since sghsubgraph isomorphism is a frequent operatiogy th
keep around smaller frequent structures and thdd bo them to create larger structures (i.e., saplkys
further down in the lattice). This technique falextive candidate generation is similar to theaidé
candidate selection for matching and addressesptiposive refinement problem mentioned above.
VSIGRAM implements focused isomorphism testing Ibgring complete embeddings and HSIGRAM
stores incomplete but compact embedding informaiiorthe form ofanchor edges Kuramochi and
Karypis also address the efficient enumeration jgrob For example, HSIGRAM reduces the number of
duplicate candidates generated by only joining ipresly generated frequent subgraphs of &ifteat share

a certain "properly selected" subgraph of skz&)(

Goethals et al. [16] propose an algorithm for mgnfrequent tree-structured patterns in a singlegped,
directed graph. In addition to the usual pattegriizes that may map to any vertex in the datalgfajith
matching structure), their algorithm finds pattethat containselectedvertices andexistentialvertices.
Selected vertices are labeled by constants and maptto specific vertices in the data graph that ar
identified by those constants. Existential vertiaes used like any other vertex to determine matchet
are not used in counting pattern occurrences. Therithm incrementally generates all possible tree
structures, starting with the smallest and increasi size up to some limit. The algorithm takdsantage

of properties of trees to efficiently avoid the geation of duplicates (i.e., efficient enumeratiofr each
tree T, the algorithm generates all possible patternedam T and executes a SQL query to check for
matches to the pattern. Duplicate patterns arectkst efficiently and removed using a canonicalepat
representation. Goethals et al. address the pugosfinement problem by generating candidateepadt
for a particular T starting with the most general and only generatfogher candidates whose
generalizations are already known to be frequeheirTprocedure does not use focused isomorphism
testing, but employs optimizations that allow thegfiencies for sets of related patterns to be ctadpn
parallel.

Many recently proposed algorithms (e.g., MoFa {i&gpan [39], FFSM [20], Gaston [26]) are similathe
approaches described here. All of these recentoappes generate candidate patterns in a depth-firs
rather than breadth-first fashion [38].

3.3 Semantic Matching Approaches

So far, | have discussed techniques that matckrpatbased on graph structure. Here, | presembitpoes
that make some use of graph semantics (i.e., vextek edge types and attribute values) as well as
structure.

As previously discussed, SUBDUE determines sintildretween graphs using a cost function that iethas
on the distortions necessary to transform one grafgthanother. These transformations may be purely
structural or they may be based on graph semaagiagell. Djoko et al. [11] explain that transforioat
costs in SUBDUE may also be based on domain knaelgde., on the underlying ontology). They
suggest, for example, that the cost of a vertest#ulion could vary based on the vertex types lve.

GraphGrep [15] operates in the graph-transactidtingeon undirected graphs with typed vertices. The
algorithm makes implicit use of vertex type infotina to perform matching. Matching in GraphGrep
relies on the concept of a label path, which ispbjna sequence of type labels along a path in plgfe.g.,
actor-movie-director-movie-actor). As mentioned \aathe GraphGrep algorithm consists of three basic
components: index construction, database filteramg, subgraph matching. During index constructibe,
algorithm computes a "fingerprint" for each graphhe database. The fingerprint of a graph is ¢&dlgra

set of pairgh(labelPath, numIDpath$, one for each label path in the graph. Here a hash function and
numiDpathsis the number of instances in the graph of theifipd label path. During candidate selection,
the database is filtered based on the fingerprinthe query. Specifically, if a grapB has a lower
numlDpathsvalue than the query for atgbelPathin its fingerprint, then it cannot contain an exanatch

for the query and can be removed from considerafiaming the subgraph matching phase, the query is
broken up into sequences of overlapping label patiéch are compared against the candidate graphs.
Label paths of the candidate graphs that matchytieey label paths can then be combined into aeingl
matching subgraph.

TMODS [8,10,17] uses a set of genetic algorithméirtd exact and inexact pattern matches in directed
attributed graphs. Patterns may specify both giratand attribute characteristics. TMODS seadbe
patterns from the bottom-up, finding sub-patteirsgt find then composing them into more complex érigh
level patterns. The TMODS pattern matching altoniis not described in further detail.

TRAKS [1] performs inexact pattern matching in tgipdirected graphs on vertex and edge types asawell
structure. Matches are ranked by similarity todhginal pattern, taking into account ontologid&tance
between types. Entities in a pattern are processadcending order of the frequency of their tip¢he
dataset, to eliminate non-matches more quickly. dlgerithm searches for matches in a depth-firshifan
by expanding partial matches by one vertex or edgetime.

The LAW system [36] performs inexact pattern maighion typed, directed graphs. Patterns are
represented as graphs with typed vertices and edges addition, the pattern language supports
construction of more sophisticated pattern quehiesugh constraints between vertices and notiook ag
hierarchy (i.e., sub-patterns), disjunction, andlicelity (i.e., the number occurrences of a vederdge).
LAW usesgraph edit distancéo measure similarity between potential match€aph edit distance is
defined as the minimum number or cost of edit ojj@ma required to transform one graph into another.
Edit operations include deletion and replacementenfices and edges. LAW uses ontological distdace
measure differences between types. Like manyefrhtching techniques already discussed, LAW finds
matches using a search-tree. The LAW search #hgoris based on A* [19] and selects nodes for
expansion based on the minimum worst-case cosis ddst is calculated based on the true cost of the
mappings so far plus the cost of deleting all uhengal vertices and edges in the pattern. Althougs t
heuristic is not admissible (in fact, it is an uppeund on the actual cost), LAW is guaranteedrtd the
lowest-cost matches because, unlike pure A*, th&VLalgorithm uses the worst-case cost heuristic asly

a selection rule and not as its termination coodifB5].

LAW generates start states by selecting the vertéite pattern with the fewest legal mappings i diata

and partial matches are expanded by selecting lorexpvertex mappings and generating adjacent edge
mappings. LAW uses an "anytime" version of A* thady be terminated at any point and will return the
matches it has found so far. The set of matchgsiasanteed to monotonically improve as the allgorit
continues to run. The LAW pattern matcher usesearth plan” (i.e., query execution plan) to deieem
the order in which query elements are processedrcBeplans may be specified by the user or
automatically calculated based on a "statisticalyais of the data." The authors do not deschibedetails

of this statistical analysis [37].

Statistical Relational Models (SRMs) model the faiistribution over tuples in a relational databasel
capture the frequencies with which the tuples [ai8]. Although this work does not provide an egjili
pattern matching algorithm, it demonstrates thaMSRexhibit substantially lower relative error than
previous methods (i.e., methods that assume attriindependence or join uniformity) for estimatiting
size of a query's result set (i.e., selectivityneation). This suggests an approach for optimiziagtern
gueries for semantic graphs using selectivity esiion and query optimization techniques, as hawnbe
studied in the XML and database communities [38.21,27,33].

3.4 Similarity-Based Matching Approaches

Inexact matching approaches, such as SUBDUE, TMARAKS, and LAW (all discussed above), match
and rank results based on their "similarity" topadfied pattern. Such approaches require a vediied
similarity measure in order to compare graphs.

As described above, SUBDUE and LAW each use varation the idea of graph edit distance to
determine similarity between graphs. Graph ediadise is defined as the minimum number or costif e
operations required to transform one graph intotlero Edit operations typically include deletion,
insertion, and replacement of vertices and edg&raph edit distance generally measures only the
structural similarity between graphs. Since grpptierns may specify type and attribute charadiesiss
well, a pattern matching algorithm for semanticpi@may also need to take similarity between aitgib
values and vertex and edge types into account.

Attributes may be compared using any number oflaiity measures. Many attribute similarity measure
are data-type dependent (e.g., Euclidean distastiieg edit distance, cosine similarity). Othenigarity
measures are more general. For example, Lin [23gmts an information-theoretic definition of darity

and shows how it may be applied to strings, featwetors, ordinal values, words, and concepts in a
taxonomy. With the exception of TMODS, none of ffatern matching algorithms surveyed here appear
to match based on attribute values. The TMODSHlitee does not provide details on attribute matghin

When graph edit distance is used in the contexsemhantic graphs, the measure may be extended to
capture the semantic similarity between types iitamh to structural similarity. When the edit apton

of replacing a vertex or edge is included, a cosy ime assigned to this operation based on theagitall
distance between the types involved. SUBDUE, TRAKBd LAW are each apparently able to take
ontological distance into account when matchinthaigh the exact method of determining ontological
distance in each is unclear.

Many proposed ontological distance measures aredbais the length of the path between concepts (i.e.
types) in a concept hierarchy (e.g., Rada et &8])[2Dther measures take into account both the ejunc
hierarchy and the way that concepts are usdtidrdataset. For example, by Lin's informatiorotleéc
definition, similarity between concepts is measussdhe ratio between the amount of informatiordade
to state the commonality of the concepts and theuaminformation needed to fully state each of the
concepts. The basic intuition here is that if tvemeepts are similar, their commonality will be largnd
their differences will be smaller. Applying a stand information-theoretic definition of information
content, Lin's similarity definition amounts to:) (@onceptsA andB are more similar the less their nearest
common ancestor occurs in the data (i.e., the eeific the common ancestor) and £2andB are more
similar the moreA andB occur in the data (i.e., the less specific th@).aFor example, if you know thAt
andB are both specializations of the conctyiing, you won't have a particularly strong belief tAzandB

are similar. However, if you then learn tdatindB are both specializations fifod (which is more specific
and less common thathing), your belief in the similarity oA and B will increase. Now suppose you
know thatA is afruit andB is avegetable At this point you may have a fairly strong btlieat A andB

are similar. If you then learn that A isnatermelonand B isspinach this is likely to decrease your belief
thatA andB are similar.

4. EVALUATION

As might be expected given the number of reseasaintunities involved in work on graph matching over
the past several decades, it is difficult to eviithe performance of the various techniques iati to
one another. Different algorithms have differirmply and researchers have evaluated their algaritim
datasets that vary tremendously in terms of sizkegaaph characteristics. In addition, the compleaitthe
patterns evaluated is a huge potential source riditian among the results of various studies. Eatiuns
generally have not attempted to analyze or quatitgycomplexity of the patterns used for evaluation

Work on graph pattern matching to date has focesaduation on the runtime performance of algorithms
Even for the inexact matching techniques | survettegle was no systematic evaluation of soluticalityu
(e.g., precision and recall of matches). The moshroon evaluation metric for the algorithms surveyed
here is runtime vs. dataset size. In the grapls#retion setting dataset size generally means timbeuof
graphs in the dataset. In the single-graph settlataset size is generally the number of vertioethe
graph. There are a number of variations. For ex@anyllmann [31] reports runtime vs. the number of
matches in the graph (i.e., selectivity of the grattquery), Wolverton et al. [30] (LAW) report rime vs.
the number of edges in the graph, and Messmer am#eB[25] report runtime, computation steps, and

10

decision tree size vs. the number of vertices alyg®in the graph, the number of graphs, and tbiside
tree depth.

The datasets used for evaluation by most systemmioned in this survey are synthetically generated
graphs with either random or regular linkage (engesh structure) between vertices. These grapios al
tend to be quite small. For example, Ullmann'phsahave between 12-14 vertices and ~20-30 edges, t
graphs used by Messmer and Bunke have up to 2@esdnd up to 44 edges, amaltyuses graphs with
between 10-1000 vertices (the number of edgestigimen). The graphs used to evaluate LAW are the
largest, with between 12,000 and 240,000 edges(theer of vertices is not given). GraphGrep [i/8f
evaluated on National Cancer Institute databasataiting up to 16,000 individual graphs representin
molecules. These graphs contain an average of @@egand a maximum of 270 (the number of edges is
not given).

In addition to the evaluations carried out in indual studies, researchers have recently begun
benchmarking activities, comparing various alganighfor graph matching and mining. So far, these
comparisons have also been based strictly on thénre performance of algorithms. The more difficul
problem of comparing algorithms based on their oufp.g., accuracy, precision/recall, or utility asares

for inexact matching and mining) has largely begrored.

Foggia et al. [12] compare five graph isomorphidgodthms (including Ullmann andauty, described
above) in the graph-transaction setting on foud&inf untyped, synthetic graphs: random, regular 2D
mesh, irregular 2D mesh, and bounded valence Kiceinded degree). The authors present the resfults
their benchmarking experiments, but provide liitiéerpretation. The main conclusion to draw isttha
graph isomorphism algorithms appear to be sendititee structure of the input data, so it is inot to
consider graph characteristics when choosing oeldping an algorithm. This also suggests that mafch
the existing evaluation may not tell us much abihwt applicability of algorithms to large real-world
datasets.

Worlein et al. [38] implement and compare four salpip mining algorithms in the graph-transaction
setting on general, undirected graphs with typetioes and edges. Runtime comparisons are performed
on several real molecular databases and synthatasets. This study breaks down the evaluatian int
several specific subproblems: duplicate filterimgfpng, pattern counting, embedding list calculatio
extending of subgraphs, and joining of subgraphg. duthors make a number of general conclusioredbas
on their analysis:

» Embedding lists do not considerably speed up seardeneral. Their utility increases as the
mined subgraphs become larger.

« Candidate generation, pattern counting, and emhgddist computations are much more
important to performance than strategies for prgiiaplicate patterns.

» Duplicate detection using a canonical graph remtesen is more efficient than explicit
isomorphism testing.

» All algorithms tested scale linearly with databasze (i.e., the number of graphs per database),
though with different factors.

5. SUMMARY

The problem of searching for patterns in graphestmed datasets has applications in such diveesesas
computer vision, biology, electronics, computeredidiesign, social networks, and intelligence aiglys
Accordingly, numerous techniques have been devdldpe matching and mining patterns in graphs.
Together, these techniques represent decades &f yoresearchers from a diverse range of research
communities. Despite the variations in propertégraphs, databases, and algorithms, several commo
themes have emerged. Since subgraph isomorphisonithfgs are computationally expensive, keeping
isomorphism calculations to a minimum is crucialaigorithm performance. Candidate selection is an
effective means by which to accomplish this andinégues for metadata construction and applicagog. (
indexing and data summarization, compression, asdketfing) are central to effective candidate sedecti

11

While there has been some work on pattern matalingg semantics as well as structure, there agpear
be opportunities to further exploit graph semantizsindexing, candidate selection, and matchiBgsed

on the work reviewed in this survey, | have made fillowing observations about pattern matching in
semantic graphs:

» Existing tree-search techniques (e.g., Ullmanrgsrghm) can be readily extended to match and
prune based on semantics as well as structure.

» Existing evaluation focuses on relatively small s, often with connections that are either
random or regular (e.g., a mesh or bounded degrdees). Real-world semantic graphs (e.g.,
social networks and the World Wide Web) are lange exhibit scale-free network characteristics
(e.g., power-law degree distribution, high clustgricoefficient, and short characteristic path
length) [2]. Therefore, existing evaluations ted little about the applicability of algorithms to
matching in semantic graphs.

* Many existing matching algorithms focus on the Hréyansaction setting, where individual
graphs tend to be very small. Therefore, many figcles are not directly applicable to large
graphs (e.g., millions of vertices). Note that#@ndidate selection is effective in breaking large
graphs into smaller graphs, techniques developedttfe graph-transaction setting may be
successfully applied to these smaller graphs.

» Existing candidate selection and indexing stratefieus on graph structure. Type and attribute
information can potentially help filter out irrelent data more quickly. However, more
sophisticated graph statistics are required toutapthe combination of attributes, type, and
structure.

» Existing graph similarity measures do not incorperall of attributes, type, and structure. An
important question for inexact matching in semagtiaphs is how to combine these different
kinds of similarity. For example, &; andG, are structurally similar, but have different dttrie
values ands; andG; have similar attribute values, but differ struelly, which of G, andGs is a
better match fo6,?

Based on these observations, the following appebetpromising research directions for pattern matge
in semantic graphs:

» Application of query optimization techniques froralational and XML databases to graph
databases. Specifically, the optimization of patigueries based on selectivity estimates derived
from probabilistic relational models. This may liue learned models such as SRMs as well as
statistical, mathematical, or probabilistic modt#at do not require learning, but are based on
simple measures calculated from the data graph.

» Techniques for indexing and candidate selectiom titiize both graph structure and semantics
(i.e., vertex and edge types and attribute values).

» Techniques for inexact matching that utilize botlapd structure and semantics (i.e., distance
measures that incorporate ontological distance dx@twtypes as well as differences in attribute
values and graph structure).

» Evaluation of matching algorithms on large realddosemantic graph datasets. Generation of
synthetic datasets that reproduce characteristicsabworld data. Evaluation techniques that take
into account the complexity and selectivity of gaterns used for evaluation.

6. ACKNOWLEDGEMENTS

This work was performed under the auspices of ttf& Department of Energy by University of Califa@ni
Lawrence Livermore National Laboratory under coettiégo. W-7405-ENG-48. UCRL-TR-220300. Many
thanks to Tina Eliassi-Rad for helpful commentghia survey at various stages.

12

7. REFERENCES

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

B. Aleman-Meza, C. Halaschek-Wiener, S. S. Salfa Sheth, and I. B. Arpinar, "Template Based
Semantic Similarity for Security ApplicationdEEE International Conference on Intelligence and
Security Informatics (IEE ISI-20052005.

A. Barabéasi and A. Reka, "Emergence of ScalimgRandom Networks,'Science 286:509-512,
October 15, 1999.

L. Becker and R. H. Guting, "The GraphDB AlgabGpecification of Advanced Data Models with
Second-Order Signature," Informatik-Report 183 nEkriversitat Hagen, Praktische Informatik 1V,
1995.

H. Blau, N. Immerman, and D. Jensen, "A vislaiguage for querying and updating graphs,”
University of Massachusetts Amherst Computer Saédrechnical Report 2002-037, 2002.

C. Borgelt and M. R. Berthold, "Mining Molecul&ragments: Finding Relevant Substructures of
Molecules,"Proceedings IEEE International Conference on Dataivy (ICDM), 2002.

H. Bunke and G. Allermann, "Inexact Graph Manthfor Structural Pattern RecognitiorRattern
Recognition Lettersvol.1, No.4, pp.245-253, 1983.

W. J. Christmas, J. Kittler, and M. Petrou, ritural matching in computervision using
probabilistic relaxation,"IEEE Transactions on Pattern Analysis and Machimgelligence
17(8):749-764, August 1995.

T. Coffman, S. Greenblatt, and S. Marcus, "Gr8ased Technologies for Intelligence Analysis,"
Communications of the ACM, Special Issue on Emgrgiachnologies for Homeland Securitfol.
47, No. 3, pp. 45-47, 2004.

D.J. Cook and L.B. Holder, "Substructure Disepyv Using Minimum Description Length and
Background Knowledge J. Artificial Intelligence Researc¢lvol. 1, pp. 231-255, Feb. 1994.

T. Darr, S. Greenblatt, and D. Strack, “A MUNT Level 2-3 Fusion Framework for Counter-
Terrorism,” Presented &/orking Together: R&D Partnerships in Homeland SiguApril 27 &
28, 2005.

S. Djoko, D. J. Cook, and L. B. Holder, "An Rgirical Study of Domain Knowledge and its Benefits
to Substructure DiscoverylEEE Transactions on Knowledge and Data Engineer@td), 1997.

P. Foggia, C. Sansone, and M. Vento, "A Pentmice Comparison of Five Algorithms for Graph
Isomorphism,”International Workshop on Graph-based Representatio Pattern Recognitign
Ischia, Italy, pp. 188 - 199, 23 — 25, May , 2001.

L. Getoor, "Learning Statistical Models froneltional Data," Ph.D. Thesis, Stanford University,
December, 2001.

P. B. Gibbons and M. Garofalakis, "Approximatgiery processing: Taming the terabytes!"
(tutorial), Proceedings of VLDR2001.

R. Giugno and D. Shasha, "Graphgrep: A fastl amiversal method for querying graphs,”
Proceedings of the International Conference in @attrecognition (ICPR)Quebec, Canada, 2002.

B. Goethals, E. Hoekx, and J. Van den Bussthining tree queries in a graphThe Eleventh
ACM SIGKDD InternationalCconference on Knowledgeddivery and Data Mining2005.

S. Greenblatt, S. Marcus, and T. Darr, "TMODStegrated Fusion Dashboard - Applying Fusion of
Fusion Systems to Counter-Terrorism," Presentedtht® 2005 International Conference on
Intelligence AnalysisMay 2-6, 2005.

R. H. Guting, "GraphDB: Modeling and Queryi@gaphs in Databases$Pfoceedings of VLDB'94
Santiago de Chile, pp. 297—308, Morgan Kaufmann4199

13

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

P. Hart, N. Nilsson, and B. Raphael, "A ForrBalsis for the Heuristic Determination of Minimum
Cost Paths,IEEE Trans. on Systems Science and Cyberngf)s 100—107, 1968.

J. Huan, W. Wang., and J. Prins, "Efficientning of frequent subgraphs in the presence of
isomorpism,"Proceedings IEEE International Conference on Dataiiy (ICDM), 2003.

Y. E. loannidis and V. Poosala, "Balancing tdgram Optimality and Practicality for Query Result
Size Estimation,"Proceedings of the 1995 ACM SIGMOD Internationalnfécence on the
Management of Datal995.

M. Kuramochi and G. Karypis, "Finding frequepgtterns in a large sparse grapisIAM
International Conference on Data Mining (SDM-02D04.

D. Lin, "An information-theoretic definition fosimilarity," Proceedings of the 15th International
Conference on Machine Learningladison, WI, 1998.

B. D. McKay, "Nauty User's Guide (Version 1:5Technical Report TR-CS-9002, Department of
Computer Science, Australian National UniversitgnBerra, Australia, 1990.

B. T. Messmer and H. Bunke, "Subgraph Isomiphin Polynomial Time," Technical Report TR-
IAM-95-003, 1995.

S. Nijssen and J. N. Kok, "Frequent Graph Miniand its Application to Molecular Databases”
(tutorial), Proceedings of IEEE Conference on Systems, Mandcghdrnetics (SMCR004.

N. Polyzotis and M. Garofalakis, "Statisticaynopses for graph-structured XML databases,"
SIGMOD Conference2002.

R. Rada, H. Mili, E. Bicknell, M. Blettner, "&elopment and application of a metric on semantic
nets,"IEEE Transactions on Systems, Man and Cybernet®39.

D. Shasha, J. T. L. Wang, and R. Giugno, "Aiipanics and applications of tree and graph
searching,'Symposium on Principles of Database Syst@ages 39--52, 2002.

SRI International, "Link Analysis WorkbenchAFRL-IF-RS-TR-2004-247, Final Technical Report,
September 2004.

J. R. Ullmann, "An algorithm for subgraph isorphism,"J. ACM23(1), 31-42, 1976.

S. Umeyama, "An eigendecomposition approachweighted graph matching problemdEEE
Transactions on Pattern Matching and Machine ligelhce 10(5):695-703, 1988.

W. Wang, H. Jiang, H. Lu, and J. Xu Yu, "Blod#iistogram: Path Selectivity Estimation for XML
Data with Updates,VLDB, 2004.

T. Washio and H. Motoda, "State of the Art@faph-based Data MiningSIGKDD Explorations
Special Issue on Multi-Relational Data Miningolume 5, Issue 1, 2003.

M. Wolverton, Personal communication with aathMarch 23, 2006.

M. Wolverton, P. Berry, |. Harrison, J. Lowia D. Morley, A. Rodriguez, E. Ruspini, and J.
Thomere, "LAW: A Workbench for Approximate Pattéviatching in Relational DataProceedings
of the Fifteenth Innovative Applications of Artidicintelligence Conference (IAAI-033003.

M. Wolverton, |. Harrison, J. Lowrance, A. Ragliez, and J. Thomere, "Software Supported Pattern
Development in Intelligence Analysis," 2006. (Mypww.ai.sri.com/pubs/files/1147.pdf)

M. Warlein, T. Meinl, I. Fischer, and M. Plpldsen, "A quantitative comparison of the subgraph
miners MoFa, gSpan, FFSM, and Gastdfriowledge Discovery in Database: PKDD 2005 (9th
European Conference on Principles and PracticeXobwledge Discovery in Database2orto,
Portugal 2005-10-03 - 2005-10-Q7%)p. 392-403, Springer, 2005.

X. Yan and J. Han, "gSpan: Graph-Based Subttra Pattern Mining,'Proceedings of IEEE
International Conference on Data Mining (ICDM002.

14

